

Sustainability Towards a Better Future

Category: Energy Efficient Organization

Ashok Leyland Pantnagar

ASHOK LEYLAND

Date: 13thSep'23

Team Members

- Amit Goel (AGM) Head EHS: amit.goel@ashokleyland.com
- Narendra L. Saini (AGM) Operation Strategy and Business Excellence:
- Niraj Singh Jarmal (Sr. Manager) Utility: Niraj.Jarmal@ahokleyland.com 0

Company Profile

Ashok Leyland is flagship company of Hinduja group

MAHARASHT

AL Foundry, Ennore

Pantnagar

- Most integrated plant of Ashok Leyland (AL)
- Pantnagar Plant situated in the foothills of Himalaya in Uttarakhand
- Spread across 190 Acres catering to more than 6000 employees
- Delivers production of ~45% total AL M&HCV Trucks

Ashok Leyland Ltd- Pantnagar

Energy Policy

2. Energy Consumption Overview

5

Distribution of Energy FY 23

#	Fuel	Used in
1	Propane	Paint Shop
2	RLNG	FSM Shop
3	Diesel	Engine Testing, Vehicle Testing, MHE

- *GJ: Giga Joules
- RLNG: Regassified Liquefied Natural Gas
- TOE; Ton of Oil Equivalent

2.1 Specific Energy Consumption in Last 3 Years

4 National Level Benchmarking

AL Pantnagar benchmark itself with Competitor no. 3 because of similar product

However accurate benchmarking can not be done due to Production Volume, different Product and aggregates and different processes, Al Pantnagar has highest year on year reduction in thermal energy in FY 22

> AL-Ashok Leyland PNR: Pantnagar

8

4.1 Roadmap to Achieve National Level Benchmarking

Road map to achieve Benchmarking-Competitor-3

AL Pantnagar benchmarked its competitors and taken target of 69% reduction till FY 26

*competitor data is FY 22

5. Energy Saving Projects Implemented In Last Three Years

Summary

Year	No of Energy saving projects	Investments (INR Lakhs)	Electrical savings (Lakhs kWh)	Thermal savings (Million Kcal)	Savings (INR Lakhs)	Impact on SEC (Electrical, thermal)
FY 2019-20	30	3	23.62	-	137.2	Electrical
FY 2020-21	109	10	28.8	221	227	Electrical & Thermal
FY 2021-22	21	78.7	53	646	279.4	Electrical
FY 2022-23	28	46.57	39		257.8	Electrical

5.1 Major Encon Projects Done in FY 22

#	Project Tittle	Saving in Lakhs KWH	Saving in Rs. Lakhs	Investment in Rs. Lakhs	ROI in Years
1	Power cost Saving from Front Facia Painting along with Cabin	19.6	102.8	70	7 month
2	To reduce compressor specific power consumption	8.0	42.0	0.70	1 month
3	Cost saving through optimization of CWP HT furnaces	6.1	31.8	0	0
4	Power saving by batch size optimization at weld lines in Cab weld shop	5.2	27.2	0	0
5	Power saving by avoiding idle running of machine	4.1	21.7	0	0
6	Power saving in top coat air circulation system	3.3	17.4	0	0
7	Power Cost saving thru administrative control during NPDs	3.0	16.0	0	0
8	To reduce power consumption in utility (Fixed Consumption reduction: LED implemntation,Motion sensor,	1.6	8.4	8	9 months
9	CPK improvement of center bearing cap side milling of Cylinder Block	1.4	7.5	0	0
10	Fixed power cost reduction in Non production days	1.2	6.1	0	0

Inference: Rs.279 Lakhs Saving Project implemented.

#	Project Tittle	Saving in Lakhs KWH	Saving in Rs. Lakhs	Investment in Rs. Lakhs
1	Electrical Energy Savings by optimizing the pump speed using VFD as per process and quality requirements (Paint Shop)	1.4	8.35	10.2
2	Optimized the running of 2 nos Air Blower of ETP by interlocking the speed with DO sensor	0.6	3.5	2.4
3	Replacement for existing Old screw compressors (0.19 KW/CFM) with energy Efficient new Compressors (0.16 KW/CFM)	4.5	27	90
4	Capacity improvement in Paint shop by increasing numbers of hangers in PTCED line	18	108 – Power 194 - fuel	163
5	Modification in existing facility 40 /10 EOT Crane.	4.5	0.5	3
6	Power saving by batch size optimization in weld shop	7	1.16	0
7	132 KW motor (IE1 efficient) installed in 800T press application. Overhauling required of existing motor, so selection of IE3 efficient motor for replacement.	0.63	3.8	0
8	Restoration of anode cell efficiency at ED bath	0.8	4.75	0
Inf	erence: Rs.260 Lakhs Saving done, reduction in Tco	2E by 4300		

5.3 Major Encon Projects Planned in FY 24

Project	Project Leader	Saving in Rs. Lakhs	Saving in Lakhs KWH
Power Factor Improvement in Weld Shop	Niraj Jarmal	15	2.1
Compressor air leakage elimination	Deepak Dhilod	22.5	3.2
Energy Efficient Compressor	Tamoghno Mukherjee	17	2.4
Engine Utility Chiller running optimization	Neeraj Bhatt	23	3.2
Productivity improvement in CWP Hard machining for 90s model	Kamal Kumar	5	0.7
Energy consumption optimization in CWP cooling tower	Deepak Gond	12.5	1.8
CH 110 Washing media to be change to convert machine from hot washing to cold washing.	Harish bisht	2	0.3
Optimization of agitation system in chemical tank at Water recirculation pit of Top coat	Kavinder Mer	5.5	0.8
Installation of energy efficient chiller	Neeraj Bhatt	14	2.0
Introduction of EMS hanger to increase the paint shop capacity	Namit Raj	30	4.2
1200 T press to be used for draw of 3 stage and 4 stage panels.	Kundan Samant	30	4.2
Chiller installation in Press shop to avoid line stoppage for heavy panels like bumper, Fascia, etc	Manish Kumar Ghildiyal	10	1.4
Energy reduction by VFD installation in FSM Shop	Navneet Nandal Singh	8	1.1
Power cost optimisation through modification in 10 ton hoist hook	Naveen Razak	4	0.5
60S productivity enhancement at CWP Hard line	Bhagwant Singh	20	2.9
		264	21

Inference: Rs. 264 Lakhs Potential Saving Project identified, saving potential in Tco2E is 4300

6.1 Innovative Projects Implemented Oven Temp Optimization

Before: High EMT (Effective Metal Temp) requirement for Frames EMT range: 180 Deg Cel for 15 min

After: 1) Low bake powder introduction 2) Hot air circulation to attain EMT between both ends EMT range: 160 Deg Cel for 15 min

<u>Result:-</u>

- Set temperature reduced up to 20°C .
- PC oven tack time reduced by 2 minutes.
- EMT achieved at both ends

Key Project Benefits

Saving of Rs 43 lakhs/annum

6.2 Innovative Projects Implemented

Optimize the air flow in paint booth by reducing fan speed to reduce energy consumption during painting process

Major Energy Conservation Projects

TCo2e in Fy23

2. Recurring Saving of

Rs. 2.14 crore /annum

200

Before

After

3. Savings of Rs. 1 lakhs/annum

Budgetary Process in Energy Conservation

ENCON Budget is allocated in two heads: 1.CAPEX 2. REVEX

0.3% of turnover of total, Encon budget is allocated in FY 23

Project Suggestion given by Associates

Beginning of every year, based on projected production volume, expected expenditure on power (considering variable + Fixed element of power cost & tariff impact) is sent to corporate.

On receipt of sanctions, plant level targets are set and this overall target is further broken down to Gemba level/Shop Level.

100% involvement : Best Suggestion is awarded with RISE-I award

SI. N^,	Project Type Ţ	Gemba Unit	Idea Description	Category	Leader	Stage	Actual Saving with Finance Vetting
107			Productivity & Process Improvement in Press Line by conversion of 3 stage operation			IL5	
107	K54	P112	into 4 stage operation (T &GSE)	Power	HariPratap		
471	SGA	P104	Production optimization at Soenen M/c	Power	Prashant	IL5	3.08
483	SGA	P104	Power cost reduction thru temp optimization at washing m/c	Power	Chetan Negi	IL5	0.898
479	SGA	P104	Introduction of low bake powder	Power	Pradeep	IL5	
117		Utility	Solar plant 0.39 MW in Press Shop	Power	Rameshwar Dayal	IL5	
558	K54	P108	Cam Lobe Finish improved from Rz 1.5 to Rz 0.4 at cam lobe lapping machine.	Power	DevRaj	IL5	
339	SGA	P111	Cooling tower Commonization for bumper Assy.	Power	Bipin Singh	IL5	
476	SGA	P104	To optimize the running of blowers motor in STP	Power	Harpal	IL5	3.7
549	Utility	Utility	Fixed consumption reduction in Sewage Treatment Plant	Power	Pankaj	IL5	
25	SGA	P102	Power cost saving at shower testing	Power	Sunil Suyal	IL5	
274		R & M	Specific energy consumption reduction at Captain bumper line	Power	Sandesh Mhatre	IL5	
323		P103	Lead time Reduction at G-91 Cabin line from weld laydown to trim PTS	Power	Narendra Bohra	IL5	

7. Utilisation of Renewable Energy Sources

Renewable Energy

Yea	Technology (Electrical)	Type of Energy	Onsite/Offs ite	Install ed Capacit y (MW)	Generation (million kWh)	% of overall electrical energy
FY 2019-20	Solar PV	Electrical	Onsite	3	3.3	13%
FY 2020-21	Solar PV	Electrical	Onsite	3	3.1	13.4%
FY 2021-22	Solar PV	Electrical	Onsite	3	3.2	14%
FY2022-23	Solar PV	Electrical	Onsite	3	3.7	10%

Exhaust heat utilization ckt

Renewable Energy

Year	Technology (thermal)	Type of Energy	Installed Capacity (million kCal)	Usage (million kCal)	% of overall thermal energy
FY 2019-20	Compressor exhaust heat recovery and utilization in washing	Thermal	300	76 238	0.5%
FY 2020-21	machine				
FY 2021-22				255	1.5%
FY 2022-23				377	1.1%

18

8. Waste Utilization and Management

Zero Waste to Land Fill

u e

Benefit :

- 49 MT/annum of Hazardous waste reduced
- Disposal cost savings Rs 100 lacs till FY23

9 GHG Accounting & Inventorization

Emission Scope-2

Benchmarked With Competitor data of FY 22 which is 0.49Tco2e/vehicle compared to ours 0.52Tco2E/Vehicle

Public disclosure on GHG is done through Annual Sustainability report ASHOK LEYLAND

1000

Kg/HECU

800

600

400

200

0

20

8.3 Efforts to Reduction in GHG : Transition Towards Clean Fuel

10. Green Supply Chain Management

ENCON Pledge on National Energy Conservation Day

	#	Name	Training Program Conducted	No. of Days	Agency
	1	Niraj Jarmal	Advance Energy Efficiency Program	2	сп
External Training		Mahesh Chandra Pandey	Advance Energy Efficiency Program	2	сп
	3	Neeraj Bhatt	Advance Energy Efficiency Program	2	сп
	4	Deepak Dhilod	Air Compressor	1	IR

Poster Competition among associates

Process Strengthening Through External Audit

- Energy audit by M/s Siemens
- Energy audit by PCRA
- Preliminary Energy Audi by M/s CII

Out of 78 findings 63 recommendation were implemented

Internal Training were periodically Imparted by Energy managers

Country Commitment

India's five Pledges in Cop-26 are:

- 1. Reach 500GW Non-fossil energy capacity by 2030.
- 2. 50% energy requirements from renewable sources.
- 3. Reduction of total projected carbon emissions by one billion tonnes from now to 2030.
- 4. Reduction of the carbon intensity of the economy by 45 per cent by 2030, over 2005 levels.
- 5. Achieving target of net zero emissions by 2070.

Ashok Leyland Commitment

Net Zero Emission	
Aspire to become net zero for own operations (Covers Scope-1 &2) by 2030	
Aspire to become net zero for upstream	
Aspire to achieve Net Zero 2048	
•	

- Net Zero emission of Scope-1& Scope-2 by 2030
- Aspire to become net zero for upstream operations (Covers Scope-3) by 2040
- Net Zero 2048

Challenges in Uttarakhand Region

- Limited Resource for renewable energy (only Solar)
- Uncertainty on weather

12 Net Zero Emission Target Short Term and Long Term

12.1 RE100

Glide Path RE100 Scope 2 coverage – Purchased Electricity

120

100

80

60

40

20

0

3 MW

10

FY 22

% of RE

4 Steps approach towards RE100 in PNR Plant

12.3 Carbon Sequestration

Tree Plantation- Join hands for spreading "Hariyali"

- Mass Tree Plantation drive
- 3 Miyawaki forest inside plant

- Carbon sequestered thru plantation both inside and outside: 3293 TCO2E
 - 97000+ trees planted "Beyond the Boundaries"

٠

Reward & Recognition – AL Pantnagar

CII EHS Gold award and Automobile Sector topper – Mar'23

1st Runner up in Air Quality Award – Mar'23

CII 23rd National Energy award- Oct'22

Gold award by SEEM for Energy Efficient Organization-Sep'22

CII- EHS Excellence award-Mar'22

Best Energy Efficient Organization-Jun'21

Major Accolades External

National Energy award by The President of India

SEEM energy Award-2019

Future Plan

By the annual Energy Saved by us, thousands of Uttarakhand houses can be enlightened for an year

Future Plan

- ZERO Ground Water Extraction 50 % by Mar'25, 100 % by Dec'27
- Wood usage elimination-Mar'25
- Afforestation 2 lacs trees by Mar'26
- EHS System Digitalization Nov'23
- 100% Renewable Energy 25 % by Sep'23, 50% by Mar'24, 100% by Mar'27
- Migration from Diesel Forklift to Electric forklift – Sep'23

[•] Implementation of ISO 50001

- Innovative Projects implemented
- External Benchmarking data of similar industries
- Best Practices of various industries
- New Product Knowledge through energy suppliers
- Different Problem Solving technique
- > Approach of industries towards climate change

Money Is Yours..... But Resources Belong to The Nature & Society

Thank you !

Contact detail:

amit.goel@ashokleyland.com

Niraj.Jarmal@ashokleyland.com

